ELA 1110

DIODE

Introduction

- The semiconductor diode is created by simply joining an n-type and a p-type material together.
- At the instant the two materials are "joined" the electrons and the holes in the region of the junction will combine, resulting in a lack of free carriers in the region near the junction, as shown in Fig.1.
- Diode Symbol with the defined polarity and the current direction and the current direction is shown in fig.2.

Fig. 1: p—n junction with no external bias

$$+ V_D = 0 \text{ V} - \text{(no bias)}$$

$$I_D = 0 \text{ mA}$$

Fig. 2: Diode Symbol

Operation

- In the absence of an applied bias across a semiconductor diode, the net flow of charge in one direction is zero.
- Under reverse bias, external potential is applied across the p n junction such that the positive terminal is connected to the n -type material and the negative terminal is connected to the p -type material as shown in fig.4.
- The current that exists under reverse-bias conditions is called the reverse saturation current and is represented by $I_{\rm S}$.
- Depletion region widens in reverse bias operation.
- A forward-bias or "on" condition is established by applying the positive potential to the p -type material and the negative potential to the n -type material as shown in Fig.3.
- The application of a forward-bias potential reduces the width of the depletion region.

Fig. 3: Forward-biased p—n junction

Fig.4: Reverse-biased p—n junction

Diode Equation

• The general characteristics of a semiconductor diode can be defined by the following equation, referred to as Shockley's equation, for the forward- and reverse-bias regions.

$$I_D = I_s(e^{V_D/nV_T} - 1)$$

Where,

 I_{S} is the reverse saturation current

 V_D is the applied forward-bias voltage across the diode

η is an ideality factor, (Value:1to2)

V_T is called the thermal voltage

• The thermal Voltage is given as

$$V_T = \frac{kT_K}{q}$$

Where,

k is Boltzmann's constant 1.38 10 23 J/K

 T_K is the absolute temperature in kelvins = 273 + the temperature in °C

q is the magnitude of electronic charge 1.6 x 10⁻¹⁹ C

Example 1: At a temperature of 27°C, determine the thermal voltage V_T . Solution:

$$T = 273 + ^{\circ}\text{C} = 273 + 27 = 300 \text{ K}$$

$$V_T = \frac{kT_K}{q} = \frac{(1.38 \times 10^{-23} \text{ J/K})(30 \text{ K})}{1.6 \times 10^{-19} \text{ C}}$$

$$= 25.875 \text{ mV} \cong 26 \text{ mV}$$

V-I Characteristics of Diode

- For negative values of V_D ,
 - $I_D = -I_S$
- At $V_D = 0V$,

•
$$I_D = I_S(e^0 - 1) = I_S(1 - 1) = 0 \text{ mA}$$

- The defined direction of conventional current for the positive voltage region matches the arrowhead in the diode symbol.
- The actual reverse saturation current of a commercially available diode will normally be measurably larger than that appearing as the reverse saturation current in Shockley's equation.

Breakdown Region

- In V-I characteristics of diode, there is a point where the application of too negative a voltage with the reverse polarity will result in a sharp change in the characteristics, as shown in Fig. 5
- The reverse-bias potential that results in this dramatic change in characteristics is called the breakdown potential and is given the label $V_{\rm BV}$
- The current increases at a very rapid rate in a direction opposite to that of the positive voltage region.
- The two break-down mechanism in diode are:
 - Avalanche Breakdown
 - Zener Breakdown

Fig. 5: Breakdown region.

Diode Resistance

- As the operating point of a diode moves from one region to another the resistance of the diode will also change due to the nonlinear shape of the characteristic curve.
- DC or Static Resistance
 - The application of a dc voltage to a circuit containing a semiconductor diode will result in an operating point on the characteristic curve that will not change with time.
 - The resistance of the diode at the operating point can be found by the following equation.

$$R_D = \frac{V_D}{I_D}$$

AC or Dynamic Resistance

- The dc resistance of a diode is independent of the shape of the characteristic in the region surrounding the point of interest.
- A straight-line drawn tangent to the curve through the \mathcal{Q} -point as shown in Fig. 6.
- It will define a particular change in voltage and current that can be used to determine the *ac* or dynamic resistance for this region of the diode characteristics

$$r_d = \frac{\Delta V_d}{\Delta I_d}$$

Where, Δ signifies a finite change in the quantity.

Fig.6: Determining the ac resistance at a Q-point.

• The lower the Q-point of operation (smaller current or lower voltage), the higher is the ac resistance.

Diode Models

- An equivalent circuit/model is a combination of elements properly chosen to best represent the actual terminal characteristics of a device or system in a particular operating region.
- Once the equivalent circuit is defined, the device symbol can be removed from a schematic and the equivalent circuit inserted in its place.
- The various models used to represent diode are:
 - Piece Wise Equivalent Circuit
 - Simplified Equivalent Circuit
 - Ideal Equivalent Circuit

Piece Wise Linear Model

- In this technique, the ideal diode is included to establish that there is only one direction of conduction through the device.
- A reverse-bias condition will result in the open-circuit state for the device.
- It can be obvious from Fig.7 that the straightline segments do not result in an exact duplication of the actual characteristics especially in the knee region.

Fig.7: Components of the piecewise-linear equivalent circuit.

Fig. 8: Defining the piecewise-linear equivalent circuit using straight-line segments

Simplified Equivalent Circuit

- For most applications, the resistance *r* av is sufficiently small to be ignored in comparison to the other elements of the network.
- The reduced equivalent circuit appears in the shown in fig.9.
- It states that a forward biased silicon diode in an electronic system under dc conditions has a drop of 0.7V.

Fig.9: Simplified equivalent circuit for the silicon semiconductor diode.

Ideal Equivalent Circuit

• In this case the equivalent circuit will be reduced to that of an ideal diode as shown in Fig. 10 with its characteristics.

Fig.10: Ideal diode and its characteristics.

• Table 1 : Diode Equivalent Circuits (Models)

Туре	Conditions	Model	Characteristics
Piecewise-linear model		$ \begin{array}{c c} & & & & \\ & & & \\ \hline & V_K & & \\ \hline \end{array} $ Ideal diode	r_{av} V_K V_D
Simplified model	$R_{ m network} \gg r_{ m av}$	V _E Ideal diode	V_K V_D
Ideal device	$R_{ m network} \gg r_{ m av}$ $E_{ m network} \gg V_K$	o Ideal drode	

Example

- **Q.** For the series diode configuration of Fig. 11 , determine V_D , V_R , and I_D using the following models: (Given $r_{AV} = 10\Omega$)
- (a) Piece wise linear Model
- (b) Constant Voltage drop Model
- (c) Ideal Diode Model

Fig.11

Solution: - a Using Precenier linear model

ID Tay

I To

$$I_{D} = I_{R} = I$$

$$V_{D} = 0.7$$

$$Y_{AV} = 10\Omega (Given)$$

$$8 - 0.7 - I_{\text{av}} - I_{\text{(2.2k)}} = 0$$

$$T = 7.3 = 0.00330 = 3.30 \text{ MA}$$

$$I_D = 3.30 \text{mA}$$

$$V_R = IXR = 3.30 \times 2.2 = 7.26 y$$

(b) Using Simpurfied Equivalent Cercuit/Constant Vottage

$$0 - 0.7 - IR = 0$$

$$T = \frac{7.3}{3.2} = 8.32 \text{ MA}$$

$$T_{D} = 3.32 \text{mA}$$

OUSing Ideal Drode Model

$$V_D = 0$$

$$G - I.(2-2) = 0$$

Problems

- Q.1 Determine the thermal voltage for a diode at a temperature of 20.Also, find the diode current if $I_S = 40$ nA, n = 2 and the applied bias voltage is 0.5 V.
- Q.2 Given a diode current of 8 mA and n = 1, find I_S if the applied voltage is 0.5 V and the temperature is room temperature (25°C).
- Q.3 Given a diode current of 6 mA, $V_T = 26$ mV, n = 1, and $I_S = 1$ nA, find the applied voltage V_D .
- Q.4 Determine the static or dc resistance of the commercially available diode of Fig. 1.15 at a forward current of 4 mA.