

## INTRODUCTION

- A clamper is a network constructed of a diode, a resistor, and a capacitor that shifts a waveform to a different dc level without changing the appearance of the applied signal.
- Additional shifts can also be obtained by introducing a dc supply to the basic structure.
- The resistor and capacitor of the network must be chosen such that the time constant must sufficiently large.
- The voltage across the capacitor does not discharge significantly during the interval the diode is nonconducting.
- Also known as DC restorer.

- Clamping networks have a capacitor connected directly from input to output with a
- Resistive element in parallel with the output signal.
- The diode is also in parallel with the output signal but may or may not have a series dc supply as an added element.





Fig.1: Clamper

## **Steps used for analysis:**

- **Step 1:** start the analysis by examining the response of the portion of the input signal that will forward bias the diode.
- Step 2: During the period that the diode is in the "on" state, assume that the capacitor will charge up instantaneously to a voltage level determined by the surrounding network.
  - For fig. 2,the diode will be forward biased for the positive portion of the applied signal.
- **Step 3:** assume that during the period when the diode is in the "off" state the capacitor holds on to its established voltage level.
  - When the input switches to the -V state, the network will appear as shown in fig.3.
  - Diode will be replaced by open circuit equivalent and stores voltage across the capacitor





**Example1:** Determine  $v_o$  for the network of fig.4. for the input indicated.





## **Solution:**

Applying Kirchhoff's voltage law around the input loop results in

$$-20 \text{ V} + V_C - 5 \text{ V} = 0$$
  
 $V_C = 25 \text{ V}$ 

The capacitor will therefore charge up to 25 V.



diode in the "on" state.



Determining v o with the diode in the "off" state.

The open-circuit equivalent for the diode removes the 5V battery from having any effect on  $V_{\rm O}$ , and applying Kirchhoff's voltage law around the outside loop of the network results in

$$+10 \text{ V} + 25 \text{ V} - v_o = 0$$
  
 $v_o = 35 \text{ V}$ 

The time constant of the discharging network of Fig. 2 is determined by the product *RC* and has the magnitude

$$\tau = RC = (100 \text{ k}\Omega)(0.1 \,\mu\text{F}) = 0.01 \text{ s} = 10 \text{ ms}$$





**Input and Output Waveform** 

**Example 2:** Repeat example 1, using a silicon diode with  $V_K = 0.7$ V.

**Solution:** V<sub>O</sub> can be determined by Kirchhoff's voltage law in the output section of Fig.4

$$+5 \text{ V} - 0.7 \text{ V} - v_o = 0$$
  
 $v_o = 5 \text{ V} - 0.7 \text{ V} = 4.3 \text{ V}$ 

For the input section Kirchhoff's voltage law results in

$$-20 \text{ V} + V_C + 0.7 \text{ V} - 5 \text{ V} = 0$$
  
 $V_C = 25 \text{ V} - 0.7 \text{ V} = 24.3 \text{ V}$ 

Applying Kirchhoff's voltage law yields

$$+10 \text{ V} + 24.3 \text{ V} - v_o = 0$$
  
 $v_o = 34.3 \text{ V}$ 







**Output Waveform** 

## **SOME MORE CLAMPING NETWORK**

| Input Waveform                        | Clamping Circuit                                                                                                     | Output Waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V $V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$ |                                                                                                                      | $\begin{array}{c c}  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & &$ |
|                                       | v <sub>i</sub>                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V $V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$ | $\begin{array}{c c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \hline & & & &$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



1

Age .