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Curvilinear Motion:  Position, Velocity & Acceleration

• Particle moving along a curve other than a straight line 

is in curvilinear motion.

• Position vector of a particle at time t is defined by a 

vector between origin O of a fixed reference frame and 

the position occupied by particle.

• Consider particle which occupies position P defined 

by     at time t and P’ defined by      at  t + Dt, r

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Curvilinear Motion:  Position, Velocity & Acceleration
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• Consider velocity    of particle at time t and velocity      

at t + Dt,

v


v



• In general, acceleration vector is not tangent to 

particle path and velocity vector.
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Derivatives of Vector Functions
 uP


• Let be a vector function of scalar variable u,
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• Derivative of vector sum,
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• Derivative of product of scalar and vector functions,

• Derivative of scalar product and vector product,
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Rectangular Components of Velocity & Acceleration

• When position vector of particle P is given by its 

rectangular components,

kzjyixr
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

• Velocity vector,
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• Acceleration vector,

kajaia

kzjyixk
dt

zd
j

dt

yd
i

dt

xd
a

zyx

















2

2

2

2

2

2



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v

e
n

th
E

d
itio

n

11 - 6

Rectangular Components of Velocity & Acceleration

• Rectangular components particularly effective 

when component accelerations can be integrated 

independently, e.g., motion of a projectile,

gyaxa yx   0

with initial conditions,

   
0000 ,0 yx vvyx 

Integrating twice yields

   
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

• Motion in horizontal direction is uniform.

• Motion in vertical direction is uniformly accelerated.

• Motion of projectile could be replaced by two 

independent rectilinear motions.
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Motion Relative to a Frame in Translation

• Designate one frame as the fixed frame of reference.  

All other frames not rigidly attached to the fixed 

reference frame are moving frames of reference.

• Position vectors for particles A and B with respect to 

the fixed frame of reference Oxyz are . and BA rr


• Vector joining A and B defines the position of 

B with respect to the moving frame Ax’y’z’ and
ABr



ABAB rrr




• Differentiating twice,

ABv


velocity of B relative to A.ABAB vvv




ABa


acceleration of B relative 

to A.
ABAB aaa




• Absolute motion of B can be obtained by combining 

motion of A with relative motion of B with respect to 

moving reference frame attached to A.
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Sample Problem 11.7

A projectile is fired from the edge of a 

cliff with an initial velocity of 180m/s 

with 30° angle with the horizontal. 

Neglecting air resistance, find:

(a) the horizontal distance to the point 

where the projectile hits ground  (b) the 

highest elevation above ground reached 

by the projectile.
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Sample Problem 11.7
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SOLUTION:

• For the vertical motion substitute the acceleration 

and initial velocity into the equations for uniformly 

accelerated motion.
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• For the horizontal motion substitute the initial 

velocity into the uniform motion equation.
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Sample Problem 11.7

)91.19(9.155x

• Solve for the time needed to hit the ground then substitute 

to find the horizontal distance.

m 150y

m3100x

• Highest elevation reached when vertical velocity is zero.
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Sample Problem 11.9

Car A is traveling east at a constant speed of 36km/h. 

As car A crosses the intersection, car B starts from rest 

35m north of the intersection and moves south with a 

constant acceleration of 1.2m/s2 . 

Find: the position, velocity and acceleration of B 

relative to A 5s after A crosses the intersection.
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Tangential and Normal Components

• Velocity vector of particle is tangent to path of 

particle.  In general, acceleration vector is not.   

Wish to express acceleration vector in terms of 

tangential and normal components.

• are tangential unit vectors for the 

particle path at P and P’.   When drawn with 

respect to the same origin, and

is the angle between them. 
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Tangential and Normal Components
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• With the velocity vector expressed as

the particle acceleration may be written as
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After substituting,
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• Tangential component of acceleration reflects 

change of speed and normal component reflects 

change of direction.

• Tangential component may be positive or 

negative.  Normal component always points 

toward center of path curvature.



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v

e
n

th
E

d
itio

n

11 - 14

Tangential and Normal Components


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

• Relations for tangential and normal acceleration 

also apply for particle moving along space curve.

• Plane containing tangential and normal unit 

vectors is called the osculating plane.
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• Normal to the osculating plane is found from
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• Acceleration has no component along binormal.
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Radial and Transverse Components

• When particle position is given in polar coordinates, 

it is convenient to express velocity and acceleration 

with components parallel and perpendicular to OP.
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Radial and Transverse Components

• When particle position is given in cylindrical 

coordinates, it is convenient to express the 

velocity and acceleration vectors using the unit 

vectors . and ,, keeR




• Position vector,

kzeRr R




• Velocity vector,

kzeReR
dt

rd
v R



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
 

• Acceleration vector,

    kzeRReRR
dt

vd
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
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
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
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Sample Problem 11.10

A motorist is traveling on curved 

section of highway at 60 mph.  The 

motorist applies brakes causing a 

constant deceleration rate.  

Knowing that after 8 s the speed has 

been reduced to 45 mph, determine 

the acceleration of the automobile 

immediately after the brakes are 

applied.

SOLUTION:

• Calculate tangential and normal 

components of acceleration.

• Determine acceleration magnitude and 

direction with respect to tangent to 

curve.
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Sample Problem 11.10

ft/s66mph45

ft/s88mph60





SOLUTION:

• Calculate tangential and normal components of 

acceleration.

 

 
2

22
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ft2500
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s 8
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• Determine acceleration magnitude and direction 

with respect to tangent to curve.

  2222 10.375.2  nt aaa 2s
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10.3
tantan 11  

t
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a
  4.48
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Sample Problem 11.12

Rotation of the arm about O is defined 

by  = 0.15t2 where  is in radians and t

in seconds.  Collar B slides along the 

arm such that r = 0.9 - 0.12t2 where r is 

in meters.

After the arm has rotated through 30o, 

determine (a) the total velocity of the 

collar, (b) the total acceleration of the 

collar, and (c) the relative acceleration 

of the collar with respect to the arm.

SOLUTION:

• Evaluate time t for  = 30o.

• Evaluate radial and angular positions, 

and first and second derivatives at 

time t.

• Calculate velocity and acceleration in 

cylindrical coordinates.

• Evaluate acceleration with respect to 

arm.
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Sample Problem 11.12

SOLUTION:

• Evaluate time t for  = 30o.

s 869.1rad524.030

0.15 2





t

t

• Evaluate radial and angular positions, and first 

and second derivatives at time t.
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Sample Problem 11.12
• Calculate velocity and acceleration.

  

r
r

r

v

v
vvv

rv

srv










122 tan

sm270.0srad561.0m481.0

m449.0










 0.31sm524.0 v
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a
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
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
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2

2

2
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2
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2
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
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









 6.42sm531.0 a
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Sample Problem 11.12

• Evaluate acceleration with respect to arm.

Motion of collar with respect to arm is rectilinear 

and defined by coordinate r.

2sm240.0 ra OAB 


