INTRODUCTIONTO NUMBER SYSTEMS
BINARY NUMBERS

A decimal number such as 7392 represents a quantity equal to 7 thousands plus 3 hun-
dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc. are powers of 10 implied
by the position of the coefficients. To be more exact, 7392 should be written as

Tx 100 +3x 10°+9 x 10"+ 2 x 10°

However, the convention is to write only the coefficients and from their position de-
duce the necessary powers of 10. In general, a number with a decimal point is repre-
sented by a series of coefficients as follows:

AsQadzA: M Qg.A— 1A -28-2

The g, coefficients are one of the ten digits (0, 1, 2, . . ., 9), and the subscript value j
gives the place value and, hence, the power of 10 by which the coefficient must be mul-
tiplied.

]05615 + 10434 + 103(,13 + 102a2 + 101ﬂ| + 100(10 + 10_'a._| + 'iO"'za_z + 10_33—3

The decimal number system is said to be of base, or radix, 10 because it uses ten digits
and the coefficients are multiplied by powers of 10. The bihary system is a different
number system. The coefficients of the binary numbers system have two possible val-
ues: 0 and 1. Each coefficient g, is multiplied by 2. For example, the decimal equiva-
Jent of the binary number 11010.11 is 26.75, as shown from the multiplication of the
coefficients by powers of 2:

I X2+ I XP4+0x2+1X2+0x224+1x2"'+1x27=26.75

In general, a number expressed in base-r system has coefficients multiplied by powers
of r:

' 7"+ @Guar" '+t arttartoa
tayritaqsr?ttotayr”



The coefficients a; range in value from O to r — 1. To distinguish between numbers of
different bases, we enclose the coefficients in parcnthcscs and write a subscript equal to
the base used (except sometimes for decimal numbers, where the content makes it ob-
vious that it is decimal). An example of a base-5 number is

(4021.2)s =4 X 5+ 0 X 52+ 2 X 5 + 1 X 5%+ 2 X 57! = (511.4)y

Note that coefficient values for base 5 can be only 0, 1, 2, 3, and 4. |

It is customary to borrow the needed r digits for the coefficients from the decimal
system when the base of the number is less than 10. The letters of the alphabet are used
to supplement the ten decimal digits when the base of the number is greater than 10.
For example, in the hexadecimal (base 16) number system, the first ten digits are bor-
rowed from the decimal system. The letters A, B, C, D, E, and F are used for digits
10, 11, 12, 13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F)1s = 11 X 16* + 6 X 162 + 5 X 16 + 15 = (46687)0



The first 16 numbers in the decimal, binary, octal, and hexadecimal systems are listed
in Table 1-1.

TABLE 1-1
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2} (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F




Arithmetic operations with numbers in base r follow the same rules as for decimal
numbers. When other than the familiar base 10 is used, one must be careful to use only
the r allowable digits. Examples of addition, subtraction, and multiplication of two bi-
nary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: —100111  multiplier: X 101
sum: 1010100 difference: 000110 1011
0000
1011
product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except
that the digits of the sum in any significant position can be only 0 or 1. Any carry ob-
tained in a given significant position is used by the pair of digits one significant position
higher. The subtraction is slightly more complicated. The rules are still the same as n
decimal, except that the borrow in a given significant position adds 2 to a minuend
digit. (A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is
very simple. The multiplier digits are always 1 or 0. Therefore, the partial products are
equal either to the multiplicand or to 0.



NUMBER BASE CONVERSIONS

A binary number can be converted to decimal by forming the sum of the powers of 2
of those coetficients whose value is 1. For example

(1010.011), = 2> + 2" + 272 4+ 27 = (10.375)10

The binary number has four 1’s and the decimal equivalent is found from the sum of
four powers of 2. Similarly, a number expressed in base r can be converted to its deci-
mal equivalent by multiplying each coefficient with the corresponding power of r and
adding. The following is an example of octal-to-decimal conversion:

(630.4); = 6 X 8 + 3 X 8 + 4 X 8! = (408.5);0

The conversion from decimal to binary or to any other base-r system is more con-
venient if the number is separated into an integer part and a fraction part and the
conversion of each part done separately. The conversion of an integer from decimal to
binary is best explained by example.

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20
and a remainder of 3. The quotient is again divided by 2 to give a new quotient and
remainder. This process is continued until the integer quotient becomes 0. The coef-
ficients of the desired binary number are obtained from the remainders as follows:



integer

quotient Remainder Coefficient
41 1 _
5 = 20 + 3 a = 1
%0 = 10 + 0 a = 0
1
D= s + 0 a =0
5 _ 1 -
E = 2 + 2] a; = 1
2= + 0 a4 =0
1 _ 1 -
E = 0 + 2 s 1

danswer: (41)10 = (a5a4agaga1ao)2 = (101001)2

The arithmetic process can be manipulated more conveniently as follows:

integer Remainder

41

20 1

10 01

5 0

2 1

1 0

0 1 — 101001 = answer H

The conversion from decimal integers to any base-r system is similar to the exam-
ple, except that division is done by r instead of 2.



Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to
give an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an
integer quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient
of 0 and a remainder of 2. This process can be conveniently manipulated as follows:

153
1911
213
012

T = (231

Which implies that:

(153)10 = (2313



The conversion of a decimal fraction to binary is accomplished by a method similar
to that used for integers. However, multiplication is used instead of division, and in-
tegers arc accumulated instead of remainders. Again, the method is best explained by
example.

.................... —_

Convert ((0.6875) to binary. First, 0.6875 is multiplied by 2 to give an integer and a
fraction. The new fraction is multiplied by 2 to give a new integer and a new fraction.
This process is continued until the fraction becomes O or until the number of digits
have sufficient accuracy. The coefficients of the binary number are obtained from the
integers as follows:

integer Fractlon Coefficient
0.6875 X 2 = | +  0.3750 a-, =1
0.3750 X 2 = 0 +  0.7500 a-, =0
0.7500 x 2 = 1 +  0.5000 a-z = 1
0.5000 x 2 = ] +  0.0000 a-s =1
Answer: (0.6875)0 = (0.a - 1a-—2a-3a-4): = (0.1011), |

To convert a decimal fraction to a number expressed in base r, a similar procedure is
used. Multiplication is by r instead of 2, and the coefficients found from the integers
may range in value from O to r — 1 instead of 0 and 1.



Convert (0.513),0 to octal.
0.513 X § = 4.104
0.104 X 8 = 0.832
0.832 X 8§ = 6.656
0.656 X 8 = 5.248
0.248 X 8 = 1.984
0.984 X 8§ = 7.872

The answer, to seven significant figures, is obtained from the integer part of the prod-
ucts:

(0.513),p = (0.406517 . . . )5 i
The conversion of decimal numbers with both integer and fraction parts is done by

converting the integer and fraction separately and then combining the two answers. Us-
ing the results of Examples 1-1 and 1-3, we obtain

(41.6875);0 = (101001.1011),
(153.513)10 = (231.406517)s



OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important part in
digital computers. Since 2° = 8 and 2* = 16, each octal digit corresponds to three bi-
nary digits and each hexadecimal digit corresponds to four binary digits. The conver-
sion from binary to octal is easily accomplished by partitioning the binary number into
groups of three digits each, starting from the binary point and proceeding to the left
and to the right. The corresponding octal digit is then assigned to each group. The fol-
lowing example illustrates the procedure:
( & I1 1{)’ r001I 101 011 . 111 I100I IOOO' l110I )2 = (26153.7460),

L )0 | L

2 6 1 5 3 7 4 0 6

Conversion from binary to hexadecimal is similar, except that the binary number is di-
vided into groups of four digits:

(.lq 1100 0110 1011 . L1111I 0010 ); = (2C6B.F2)¢
2 C 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily
remembered after studying the values listed in Table 1-1.




Conversion from octal or hexadecimal to binary is done by a procedure reverse to
the above. Each octal digit is converted to its three-digit binary equivalent. Similarly,
each hexadecimal digit is converted to its four-digit binary equivalent. This is illus-
trated in the following examples:

(673.124)s = ( 110 111 011 . 001 010 100 ),
| | L ) i | | J L ]

L f

6 7 3 1 2 4
(306.D)16 = ( 0011 0000 O110 . 1101 )z
L b | o | |
3 0 6 D

Binary numbers are difficult to work with because they require three or four
times as many digits as their decimal equivalent. For example, the binary number
HT1111111111 1s equivalent to decimal 4095. However, digital computers use binary
numbers and it is sometimes necessary for the human operator or user to communicate
directly with the machine by means of binary numbers. One scheme that retains the bi-
nary system in the computer but reduces the number of digits the human must consider



utilizes the relationship between the binary number system and the octal or hexadeci-
mal system. By this method, the human thinks in terms of octal or hexadecimal num-
bers and performs the required conversion by inspection when direct communication
with the machine is necessary. Thus the binary number 111111111111 has 12 digits
and is expressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits).
During communication between people (about binary numbers in the computer), the
octal or hexadecimal representation is more desirable because it can be expressed more
compactly with a third or a quarter of the number of digits required for the equivalent
binary number. When the human communicates with the machine (through console
switches or indicator lights or by means of programs written in machine language), the
conversion from octal or hexadecimal to binary and vice versa is done by inspection by
the human user.



COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation
and for logical manipulation. There are two types of complements for each base-r sys-
tem: the radix complement and the diminished radix complement. The first is referred
to as the r’s complement and the second as the (r — 1)’s complement. When the value
of the base r is substituted in the name, the two types are referred to as the 2°s comple-
ment and 1’s complement for binary numbers, and the 10’s complement and 9’s com-
plement for decimal numbers.



Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)’s complement of N is defined
as (r* — 1) — N. For decimal numbers, r = 10 and r — 1 = 9, so the 9’s comple-
ment of N is (10" — 1) — N. Now, 10" represents a number that consists of a single ]
followed by n 0’s. 10" — 1 is a number represented by n 9’s. For example, if n = 4,
we have 10* = 10,000 and 10* — 1 = 9999, It follows that the 9’s complement of a
decimal number is obtained by subtracting each digit from 9. Some numerical examples
follow.

The 9’s complement of 546700 is 999999 — 546700 = 453299.
The 9’s complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r = 2 and r — 1 = 1, so the 1's complement of N is
(2 — 1) — N. Again, 2" is represented by a binary number that consists of a 1 fol-
lowed by n Os. 2" — 1 is a binary number represented by. n 1’s. For example, if
n = 4, we have 2* = (10000), and 2° — 1 = (1111),. Thus the 1’s complement of a
binary number is obtained by subtracting each digit from 1. However, when subtract-
ing binary digits from 1, we can have either 1 — 0 = 1 or 1 — 1 = 0, which causes

the bit to change from 0 to 1 or from 1 to 0. Therefore, the 1’s complement of a binary
number is formed by changing 1’s to 0’s and 0’s to 1's. The following are some nu-
merical examples.

The 1’s complement of 1011000 is 0100111,
The 1’s complement of 0101101 is 1010010,

The (r — 1)’s complement of octal or hexadecimal numbers is obtained by subtractmg
each digit from 7 or F (decimal 15), respectively. o



Radix Complement .
s

The r’s complement of an n-digit number N in base r is defined as r* — N for N, %_Q,
and 0 for N = 0. Comparing with the (r — 1)’s complement, we note that the r’s
‘complemént 15 obtained by adding 1 to the (r — 1)’s complement since " — N =

*[(r~ — 1) — N] + 1. Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611
and is obtained by adding 1 to the 9’s-complement value. The 2’s complement of bi-
nary 101100 is 010011 + 1 = 010100 and is obtained by addmg 1 to the 1’s-comple-
ment value.

Since 107 is a number represented by a 1 followed by n 0’s, 10" — N, which is the
10’s complement of N, can be formed also by leaving all least significant 0’s un-
changed, subtracting the first nonzero least significant digit from 10, and subtracting all
higher significant digits from 9.

The 10’s complement of 012398 is 987602.
The 10’s complement of 246700 is 753300.

The 10’s complement of the first number is obtained by subtracting 8 from 10 in the
least significant position and subtracting all other digits from 9. The 10’s complement
of the second number is obtained by leaving the two least significant 0's unchanged,
subtracting 7 from 10, and subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and
the first 1 unchanged, and replacing 1’s with 0’s and 0’s with 1's in all other higher
significant digits.

The 2’s complement of 1101100 is 0010100.
» The 2’s complement of 0110111 is 1001001.

The 2’s complement of the first number is obtained by leaving the two least significant
0’s and the first 1 unchanged, and then replacing 1’s with 0’s and 0’s with 1’s in the
other four most-significant digits. The 2’s complement of the second number is ob-
tained by leaving the least significant 1 unchanged and complementing all other digits.
In the previous definitions, it was assumed that the numbers do not have a radix
point. If the original number N contains a radix point, the point should be removed



temporarily in order to form the r’s or (r — 1)’s complement. The radix point is then
restored to the complemented number in the same relative position. It 1s also worth
mentioning that the complement of the complement restores the number to its original
value. The r’s complement of N is r” — N. The complement of the complement is
r* — (r" — N) = N, giving back the original number.



Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow con-
cept. In this method, we borrow a 1 from a higher significant position when the minu-
end digit is smaller than the subtrahend digit. This seems to be easiest when people per-
form subtraction with paper and pencil. When subtraction is implemented with digital
hardware, this method is found to be less efficient than the method that uses comple-
ments.

The subtraction of two n-digit unsigned numbers M — N in base r can be done as
follows:

1. Add the minuend M to the r’s complement of the subtrahend N. This performs
M+ (r"—N)=M—-N+r".

2. If M = N, the sum will produce an end carry, r”, which is discarded; what is left
is the result M — N.

3. If M <N, the sum does not produce an end carry and is equal to
r* — (N — M), which is the r’s complement of (N — M). To obtain the answer
in a familiar form, take the r’s complement of the sum and place a negative sign
in front.

The following examples illustrate the procedure.



The subtraction of two n-digit unsigned numbers (M — N) in base (r-1) can be done as follows:

1. Add the minuend M to the (r — 1)’s complement of the subtrahend N.
2. Inspect the result obtained in step 1 for an end carry.
a) If anend carry occurs, add 1 to the least significant digit (end — around carry).
b) If an end around carry does not occur, take the (r — 1)’s complement of the number
obtained in step 1 and place a negative sign in the front.



Using 10°s complement, subtract 72532 — 3250.

Example
1-5
M= 72532
10’s complement of N = + 96750
Sum = 169282
Discard end carry 10° = — 100000
Answer = 69282 |
Note that M has 5 digits and N has only 4 digits. Both numbers must have the same
number of digits; so we can write N as 03250. Taking the 10’s complement of N pro-
duces a 9 in the most significant position. The occurrence of the end carry signifies that
M = N and the result is positive.
Example Using 10’s complement, subtract 3250 — 72532.
-6 M= 03250
10’s complement of N = + 27468
Sum = 30718

There is no end carry.
Answer: —(10’s complement of 30718} = —69282 |

Note that since 3250 << 72532, the result is negative. Since we are dealing with un-
signed numbers, there is really no way to get an unsigned result for this case. When
subtracting with complements, the negative answer is recognized from the absence of
the end carry and the complemented result. When working with paper and pencil, we

" can change the answer to a signed negatlve number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner us-
ing the same procedure outlined before.



Example Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtrac-
1-7 tion (a) X — Y and (b) Y — X using 2’s complements.

(a) X = 1010100
2’s complement of ¥ = + 0111101
Sum = 10010001
Discard end carry 2’ = —10000000
Answer: X — Y = 0010001
(b) Y = 1000011
2’s complement of X = + 0101100

Sum = 1101111

There is no end carry.
Answer: Y — X = —(2’s complement of 1101111) = —0010001 ]

Subtraction of unsigned numbers can be done also by means of the (r — '1)’s com- -
plement. Remember that the (r — 1)’s complement is one less than the r’s comple-
ment. Because of this, the result of adding the minuend to the complement of the sub-
trahend produces a sum that is 1 less than the correct difference when an end carry
occurs. Removing the end carry and adding 1 to the sum is referred to as an end-
around carry.



Example Repeat Example 1-7 using 1’s complement.

1-8 (@) X — ¥ = 1010100 ~ 1000011
X = 1010100
1’s complement of ¥ = + 0111100
Sum = —— 10010000
End-around carry —_— + |
Answer. X — Y = 0010001
(b) Y — X = 1000011 — 1010100
Y = 1000011
1’s complement of X = + 0101011
Sum = 1101110

There is no end carry.
Answer: Y — X = —(1’s complement of 1101110} = —0010001
Note that the negative result is obtained by taking the 1’s complement of the sum

since this is the type of complement used. The procedure with end-around carry is also
applicable for subtracting unsigned decimal numbers with 9’s complement.



Boolean Algebra and Logic
Gates




BASIC DEFINITIONS

Boolean algebra, like any other deductive mathematical system, may be defined with a
set of elements, a set of operators, and a number of unproved axioms or postulates. A
set of elements is any collection of objects having a common property. If S 1s a set, and
x and y are certain objects, then x € S denotes that x is a member of the set S, and
y & S denotes that v is not an element of S. A set with a denumerable number of ele-
ments is specified by braces: A = {1, 2, 3, 4}, i.e., the elements of set A are the num-
bers 1, 2, 3, and 4. A binary operator defined on a set § of elements is a rule that as-
signs to ecach pair of elements from S a unique element from S. As an example,
consider the relation a * b = c. We say that # is a binary operator if it specifies a rule
for finding ¢ from the pair (@, b) and also if ¢, b, ¢ € S. However, * 1s not a binary
operator if a, b € S, whereas the rule finds ¢ € S.

The postulates of a mathematical system form the basic assumptions from which it is
possible to deduce the rules, theorems, and properties of the system. The most com-
mon postulates used to formulate various algebraic structures are:



1.

Closure. A set S is closed with respect to a binary operator if, for every pair of
clements of S, the binary opertor specifies a rule for obtaining a unique element
of S. For example, the set of natural numbers N = {1, 2, 3, 4, . . . } is closed
with respect to the binary operator plus (+} by the rules of arithmetic addition,
since for any a, » € N we obtain a unique ¢ € N by the operationa + b = c.
The set of natural numbers is not closed with respect to the binary operator minus
(—) by the rules of arithmetic subtraction because 2 — 3 = —1l and 2, 3 € N,

while (—1) &€ N.

Associative law. A binary operator * on a set S is said to be associative whenever

(x *y)*z=1x%(y % 2) forallx, vy, z, €S

. Commutative law. A binary operator * on a set S is said to be commutative

whenever

X *y=1y%xx forallx,y €8S

Identity element. A set S is said to have an identity element with respect to a bi-
nary operation * on S if there exists an element ¢ € S with the property

ek x =x*e=x foreveryx € S

Example: The element 0 is an identity element with respect to operation + on the
set of integers I = { . . ., =3, -2,-1,0,1,2,3, ... } since

x+0=0+x=x forany x €1

The set of natural numbers N has no identity element since 0 is excluded from
the set.



5. Inverse. A set S having the identity element e with respect to a binary operator

* 18 said to have an inverse whenever, for every x € S, there exists an element
¥ € S such that

X *¥y=e¢e

Example: In the set of integers I with e = 0, the inverse of an element & is (—a)
since a + (—a) = 0.

6. Distributive law. If * and - are two binary operators on a set S, * is said to be dis-
tributive over - whenever

x*(yz)=(x*y)-(x %2



Boolean algebra is an al gebraic structure defined on a set of elements B together
with two binary operators + and - provided the following (Huntington) postulates are
satisfied:

L.

2.

(a) Closure with respect to the operator +.

(b} Closure with respect to the operator -.

(a) An identity element with respect to +, designated by 0: x + 0 =
0+ x = x.

(b) An identity element with respect to -, designated by 1: x - l=1-x=x.

(a) Commutative with respectto +:x + y =y + x.

(b} Commutative with respect to > x-y = y-X.

. (a) - is distributive over +: x-(y + z) = (x- y) + (x-z).

(b) + is distributive over -:x + (y-z) = (x + y)- (x + 2).

. For every element x € B, there exists an element x' € B (called the comple-

ment of ¥) such that (a) x + x" = land (b) x-x" = 0.

There cxists at least two elements x, y € B such that x #+ y.



Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two clements, B = {0, 1}, with

rules for the two binary operators + and * as shown in the following operator tables
(the rule for the complement operator is for verification of postulate 5):;

Xy X'y X y X+y X x'
0 0 0 0 0O 0 0 1
0 1 0 0 1 1 1 0
1 0O 0 1 0 1
1 1 1 1 1 1

These rules are exactly the same as the AND, OR, and NOT operations, respectively,
defined in Table 1-6. We must now show that the Huntington postulates are valid for
the set B = {0, 1} and the two binary operators defined before.



1. Clo : : : L.
cle l.sl*grils(.) otgru};l's from the tables since the result of each operation is either 1 or

2. From the tables we see that
@o+0=0 O0+1=14+0=1
b)1:-1 =1 1:0=0-1=0
which establishes the two identi .
which e WO identity elements O for + and 1 for - as defined by pos-

3. The commutative laws are obvious from the symmetry of the binary operator ta-

bles.
4. (a) The distributive law x-(y + z) = (x-y) + (x-z) can be shown to hold true
from the operator tables by forming a truth table of all possible values of x, v,
and z. For each combination, we derive x - (y + z} and show that the value 1s

the same as (x* y) + (x2).



X y z yt2z x{y + 2 Xy xZ (x ¥l + ix-2)
0O 0 O 0 0 0 0 0
0 0 l | 0 0 0 0
0 | 0 1 0 0 0 0
0 1 1 | 0 0 0 0
| 0 0 0 0 0 0 0
l 0 1 1 I 0 1 1
| | 0 1 { 1 0 ]
1 1 | 1 1 1 | 1

(b) The distributive law of + over - can be shown to hold true by means of a
truth table similar to the one above.

5. From the complement table it is easily shown that
(a)x+x’=1,since0+0'=0+l=]andl+l’=l+0=l.
(b) x-x’ =0, since 0-0' =0-1=0 and 11" =1-0 =0, which verifies
postulate 5.
6. Postulate 6 is satisfied because the two-valued Boolean algebra has two distinct el-
ements, 1 and 0, with 1 # 0.



2-3 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

The Huntington postuiates have been listed in pairs and designated by part (a) and part
(b). One part may be obtained from the other if the binary operators and the identity
elements are interchanged. This important property of Boolean algebra is called the
duality principle. It states that every algebraic expression deducible from the postulates
of Boolean algebra remains valid if the operators and identity elements are inter-
changed. In a two-valued Boolean algebra, the identity elements and the elements of
the set B are the same: | and 0. The duality principle has many applications. If the dual
of an algebraic expression is desired, we simply interchange OR and AND operators
and replace 1’s by 0’s and 0’s by 1’s.

Basic Theorems

Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The notation
is simplified by omitting the - whenever this does not lead to confusion. The theorems
and postulates listed are the most basic relationships in Boolean algebra. The reader is
advised to become familiar with them as soon as possible. The theorems, like the pos-
tulates, are listed in pairs; each relation is the dual of the one paired with it. The postu-
lates are basic axioms of the algebraic structure and need no proof. The theorems must
be proven from the postulates. The proofs of the theorems with one variable are pre-
sented below. At the right is listed the number of the postulate that justifies each step of
the proof.



TABLE 2-1

Postulates and Theorems of Boolean Algebra

Postulate 2

Postulate 5

Theorem 1

Theorem 2

Theorem 3, involution
Postulate 3, commutative
Theorem 4, associative
Postulate 4, distributive
Theorem 5, DeMorgan
Theorem 6, absorption

(a) x +0=1x
(A x+x" =1
(a) x + x = x
(@ x+1=1

(x) =x

(a)x+(y+z)=(x+y)+z
(@ x(y+z) =xy + xz

@ (x +y) =x"y’

(@) x + xy = x

b) x-1=x
b)) x-x'"=0
(b) x x =x
b) x-0=0
(b) xy = yx

(b) x(yz) = (xy)z

“(b) x + yz = (x + y)(x + 2)

(b) (xy) =x' + y'
(b) x(x + y) = x




THEOREM 1[a):

X+ X = X.

x+x=({x+x)1

THEOREM 1{b):

x -

X

= X

(x + x)(x + x")

x + xx'

x+0

X = X.

X

\

xx + 0
xx + ax’
x(x + x')

x-1

by postulate:

by postulate:

2(a)
5(b)
4(a)
5(a)
2(b)

2(b)
5(a)
4(b)
5(b)
2(a)



Note that theorem 1{b) is the dual of theorem 1(a) and that each step of the proof n
part (b) is the dual of part (a). Any dual theorem can be similarly derived from the
proof of its corresponding pair.

THEOREM 2{a): x + 1= 1.

x+1=1(x+1) by postulate: 2(b)
=(x+x)Mx+1) 5(a)
=x+x'-1 4(b)
=x+ x’ 2(b)
=1 5(a)

THEOREM 2({b): x-0 = 0 by duality.

THEOREM 3: (x’)’ = x. From postulate 5. wehave x + x’ = land x-x" = 0,
which defines the complement of x. The complement of x' is x and is also (x')".
Therefore, since the complement is unique, we have that (x) = x.

The theorems involving two or three variables may be proven algebraically from the
postulates and the theorems that have already been proven. Take, for example, the ab-
sorption theorem.



THEOREM 6{a): x + xy = x.

x+xy=x-1+xy  bypostulate: 2(b)

=x(1 +y) 4(a)
=x(y + 1) 3(a)
= x-1 2(a)
= x 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be shown to hold true by means of truth ta-
bles. In truth tables, both sides of the relation are checked to yield identical results for
all possible combinations of variables involved. The following truth table verifies the
first absorption theorem.

J

>
3

r—tn—tQQ"‘

—_— = O O
—_ O = O [
-0 oo &

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will
not be shown here. However, their validity is easily shown with truth tables. For exam-
ple, the truth table for the first DeMorgan’s theorem (x + y)' = x* y' is shown below.

X y X + y (X + y)i X’ yP lef
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 I 0 0 1 0
| 1 1 0 0 0 0




2-4 BOOLEAN FUNCTIONS

A binary variable can take the value of 0 or 1. A Boolean function is an expression
formed with binary variables, the two binary operators OR and AND, and unary oper-
ator NOT, parentheses, and an equal sign. For a given value of the variables, the func-
tion can be either 0 or 1. Consider, for example, the Boolean function

F = xyz'

The function F; is equal to 1 if x = 1 and y = 1 and 2z’ = 1; otherwise Fi = 0. The
above is an example of a Boolean function represented as an algebraic expression. A
Boolean function may also be represented in a truth table. To represent a function in a
truth table, we need a list of the 2" combinations of 1’s and 0’s of the » binary vari-
ables, and a column showing the combinations for which the function is equal to | or 0.
As shown in Table 2-2, there are eight possible distinct combinations for assigning bits
to three variables. The column labeled F; contains either a O or a 1 for each of these
combinations. The table shows that the function F, is equal to 1 only when x = 1,
y = 1,and z = Q. It is equal to O otherwise. (Note that the statement z’ = 1 is equiva-
lent to saying that z = 0.) Consider now the function



TABLE 2-2
Truth Tables for F; = xyz', F: = x + y'z,
Fr=x'y'z+xyz+xy,and F, = xy' + x'z

X Y Z F s Fs
0 0 0 0 0 0 0
0 0 1 0 | 1 1
0 1 0 O 0 0 O
0 1 i 0 0 1 !
1 0 0 0 1 1 1
1 0 1 0 1 | 1
1 1 0 1 1 0 0
| 1 1 0 1 0 0




Name Graphic Algebraic Truth
symbol function table
x y| F
x - 0 0] 0
AND | F F=x 0 1|0
d 1 0| o
I 1] 1
x y| F
— 0 0]/ 0
OR x F Famx4y o 1l 1
Y 1 0|1
1 1|1
x| F
Inverter x —Do— F F= x o1
11 0
x| F
Buffer x ——I >——F F=x )
111
x y| F
x 0 of 1
NAND | )o— F F= () 0 1|1
1 01
I 110
x y| F
x 0 01
NOR y:Do—F F=(x+yy 0 1|0
1 00
1 110
x y|F
Exclusive-OR X :I:)_ F F=x'+xy g (l) ?
(XOR) ¥ - =x@Dy 1 01
1 110
x y|F
Exclusive-NOR  x ——\ = 1t 0 o1
equivalence * 7 =x0y 1 0|0
1 111
FIGURE 2-5

Digital togic gates



1.5 Definition of Boolean Algebra

Boolean algebra provides the necessary tools to calculate and interpret information
presented in binary form. Boolean algebra is an algebraic system (a set of elements
to which a set of operations is associated), defined by:

e The set of values {0,1};

e The operations OR, AND, and NOT,

e The equivalence operator “=", along with the properties reflexive, symmetric, and
transitive.

The three operations are defined as follows:

Operation: OR AND NOT

(logical sum) (logical product) (negation)

Algebraic symbols: X+7Y X-Y=XY X
XvY XANY X
XUY XNY -X
XorY Xand Y not(X)
XY\ X+Y XY|X.Y XX
00| O 00 O 01

Truth table: 01 1 01} O 110
1 0] 1 1 0] O
11 1 I 1 |

R, - ‘ ‘ T XD V OF
Circuit diagram symbols: To=3 YC




1.6 The Fundamental Properties of Boolean Algebra

Conventions

e XY, Z, X, X5, X5, ..., X,,, are considered Boolean variables.
e The parentheses establish the calculation priorities as in regular algebra.
e AND is prioritized over OR (e.g., X + YZ = X + (Y Z)).

This is also analogous to regular algebra. All the properties can be demonstrated
through Perfect Induction, that is, by verifying the validity of each combination of
values assumed by the variables that make up the expression.

X0|X-0
Example: X - 0 = 0 is verified through the truth table: 0 0| 0
10| 0

Duality Principle

If a given expression is valid, its dual expression is also valid. The dual expression is
obtained by switching the OR with the AND and the 0 constants with the 1 constants
from the original expression. For example:

X+1=1
(dual:) X-0=0

X+0=X
(dual:) X1 =X
Idempotent Law
X4+X=X
(dual:) X X =X
Commutative Law
X+Y=Y+X

(dual:) X-Y =VY-X

Associative Law

X+YV+Z=X+Y+Z)=X+Y+2Z
(dual:) (X-Y)-Z = X-(Y-Z) = XY -Z.

The associative law makes it possible to extend fundamental operations to more than
two variables. The circuit symbols for the first expression are:



XC A 2 | X O—

_‘-_l" —‘-u.....,,'ﬂ...
YO YD Y [;:_‘{_/\_[;. F

20 i/—t F z [—Jj 7 O—
(X +Y)+2 X+ (Y +2) X+Y+2

As there is no distinction between the first and second circuits, it makes sense to
generally define an OR of three or more inputs. The same holds true for the AND,
so it is really the property of Associativity that allows us to make sense of OR and
AND gates with more than two inputs.

We can redefine the OR and AND operations with 7 inputs:

e An OR with n inputs gives a 0 as output only if all the n inputs are 0, otherwise it
gives a 1 as output.

e An AND with n inputs gives a 1 as output only if all the n inputs are 1, otherwise
it gives a 0 as output.



Distributivity

Factoring law X+Y) X+2)=X+((Y-Z2)
Distributive law (dual:) (X -Y)4+ (X -Z) =X - (Y + Z)

Proof of the factoring law:

(X+Y) - X+Z)=X - X+X - Z+X.-Y+Y.-Z=
=X+X-Z4+X-Y4+Y-Z
=X -(1+Y)+X-Z+Y-Z
—X+X-Z+Y-Z
=X-(14+2)+Y-Z
=X+ 2)

It would also be possible to demonstrate this law through Perfect Induction (i.e.,
verifying all the possible combinations for X, Y, Z):

XYZ)Y - ZIX+Y - ZIX+Y X+ Z|(X+ V)X + Z)
000 O 0 0 0 0
001 O 0 0 1 0
010 0 0 1 0 0
01 1] 1 1 1 1 1
1 00| O | | | |
101} 0O 1 1 1 1
1 10} 0O | | | |
111 1 | 1 | |




It is clear that columns X + Y - Z and (X + Y)(X + Z) are equal.

Complementation
X+X=1
(dual:) X-X =0
Absorption
First form:
X+X-Y =X

(dvual:) X-(X+Y)=X

Second form:

X+X-V)=X+7Y
(dual) X- X+Y)= X Y

Proof:

X+X-Y =X-(14Y)=X-1=X

X X+Y)=X - X+X-Y=X+X-Y=X

X+XV =X4X-Y+X - V=X4YX+X)=X+Y
X X+Y)=X-X+X-Y=X-Y



Logic Adjacency

YX+LYX=Y
(dual:)) Y +X)- Y +X)=Y

Proof:
YX+YX=Y - X+X)=Y-1=Y
Y+X)- X+X)=Y+X-X)=Y+0=Y
Consensus

X-Y+Y - Z+Z-X=X-Y+Z-X
(dual:) X+ YVY +Z2)(Z+X)=X+Y)(Z+X)



Proof:

X-Y4+Y-Z+Z-X=
=X Y+Y - X+X)-Z+Z -X=
=X-Y+X- Y- 2)+(Z-X-Y+Z-X)=
=X-Y+Z-X

X+VNY+Z2)(Z+X)=
=X4+NX+Y+2D)X+Y+DNZ+X) =
=[(X+YV)X+Y+DIZ+X+Y)NZ+X)]=

—(X+YNZ+X)



Involution
Also known as Double Complement law: X = X.
Duality or De Morgan’s Theorem

A logical product of two variables can be substituted by the negation of their logical
sum. Dual: a logical sum of two variables can be substituted by the negation of their
logical product:

XY =X+Y

(dual:) X+Y=X-Y

<
[
]
H—/
>
=
]

W > X+Y

0%
o7

This theorem is important: it allows us to obtain an AND through an OR gate and
vice versa. The theorem tells us that either one of the two functions is superfluous
according to the definition of Boolean algebra.

Generalized De Morgan’s Theorem

The theorem applies to any number of variables:

X -Xo-...- X, = X +X2+..
(duval:) X1 +X2+...4+ X, = X;-X2-...-X,.




1.7 Other Operations

In this paragraph, we define other operations in Boolean algebra: NAND, NOR, and
EXOR.

NAND

The NAND operation is equivalent to an AND whose output is negated:

XnandY =(X-Y)

X Y| (Xnand Y)
00 1 Circuital symbols:
01 1 =
X0 o XY AD £ >——D XY
10 1 YO 5 YO )
11 0
NOR

The NOR operation is equivalent to an OR whose output is negated:

XnorY=(X+Y)

Circuital symbols:
X [ i, XD 21

0 O——D X+Y O—— X+Y
YO YO

NAND and NOR are commutative but not associative.

>—‘P—‘C)CD><
—_ 0 = O~
[y




XOR (Exclusive OR)

The XOR operation is said “anticoincidence” (it provides 1 when the inputs are
different):

XY =XxorY=XY+XY

Circuital symbols:

X O—N\\ X O =1
XY - OXPY
Y D——— YO

—_— O O

—_ O = O~
S = = OP




1.8 Functionally Complete Operation Sets

We have seen that Boolean algebra is based on a set of two elements {0, 1} and a set of
operations: OR, AND, NOT. Also, De Morgan’s Theorem shows that one of the two
AND or OR operations can be considered superfluous and the sets of {OR, NOT} or
{AND, NOT} are a sufficient basis to construct all of Boolean algebra. Let’s broaden
the subject by discussing other sets of operations that allows to construct Boolean
algebra (named, for this reason, Functionally Complete Operation Sets):

{AND, OR, NOT}
{NOR}

{NAND)

{OR, NOT}
{AND, NOT)}
{EXOR, AND)
{EXOR, OR}

Note: in practice, only {NOR} and {NAND} sets are used.

{NOR} Set

We can obtain OR and NOT from NOR gates. If we connect a NOR as in the figure
below, we obtain a NOT. Given that the X and Y inputs are connected together, we
obtain the following from the NOR table:

AN



X Y| XnorY
XD—{ ) Yo—->pX 00 1
In fact;
n fact 11 0

To obtain the AND, we apply De Morgan: X - Y = X + Y. We have:

X D—
XY
YDO—




{NAND} Set

Similar to the above, the NOT is obtained as follows, taking into account the two
lines of the NAND table where the two X and Y inputs are equal:

— X Y| Xnand Y
X o——DX
D—+: In fact: (1) (1) (1)
| NOT |

Therefore, to obtain the AND, it is sufficient to connect the NAND to a NOT made

with a NAND.
X D— XY J_D XY
Y D]

Finally, by De Morgan, we obtain the OR:



=D =S

Y

Take note: there is another way to obtain the NOT by the NAND. By conne
one of the inputs to the constant X = 1:

X Y|X nand Y e
00 1 . Y
11 0 we obtain: Y b————

NOT |

Similarly, if we posit X = 0 for the NOR we get:

XY \ X nor Y 0’ 3
0 O‘ 1 we obtain: Y
| NOT |

01 0

{OR, NOT} Set

The AND is obtained by De Morgan’s Theorem.
{AND, NOT} Set

The OR is obtained by De Morgan’s Theorem.



[XOR, AND} Set

The NOT is obtained by the XOR as follows:

From the XOR truth table, we get:

XY X®Y
0 0f O
0 1 |
1 0 1
1 1 O

positing X = 1:

XY X®Y
1 0] 1
1 1] O




Note: If we change the constant X = 1in0, we get the identity. Therefore, we obtain
an inverting/identity function, “programmable” by the input X.

{XOR, OR} Set
The NOT is obtained through the XOR and the AND by using De Morgan’s Theorem.
Identity
Identity can be obtained in the following ways:
1 XY|X+Y
from OR: X D—j)—‘? X In fact: 00| O
1 1 1
™ XY\ XY

from AND: X D—EJ—D X In fact: 0 0] O
I 1 1
” XY|Xa®v
from XOR: ve ED—D) Y In fact: 00l O
0 1 |




DECODERS AND ENCODERS

Discrete quantities of information are represented in digital systems with binary codes.
A binary code of n bits is capable of representing up to 2" distinct elements of the
coded information. A decoder is a combinational circuit that converts binary informa-
tion from n input lines to a maximum of 2" unique output lines. If the n-bit decoded in-
formation has unused or don’t-care combinations, the decoder output will have fewer
than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m =< 2". Their
purpose is to generate the 2" (or fewer) minterms of » input variables. The name de-
coder is also used in conjunction with some code converters such as a BCD-to-seven-
segment decoder.

As an example, consider the 3-to-8-line decoder circuit of Fig. 5-8. The three inputs
are decoded into eight outputs, each output representing one of the minterms of the 3-
input variables. The three inverters provide the complement of the inputs, and each one
of the eight AND gates generates one of the minterms. A particular application of this
decoder would be a binary-to-octal conversion. The input variables may represent a bi-
nary number, and the outputs will then represent the eight digits in the octal number

‘r D, = x'y'?
. [ D: } Dy = xyz
] ' D, = x'yz’
r—[> —
' D: . \ Dy= x'yz
x / Pa = v
\ Dy — xy'z
} Dy = xy7’
) 5 = XYI
L/

FIGURE 5-8
A 3-10-8 line decoder



SO OO OO O —

OO OO —=0

OO —0O0

COoOOOOCOC QOO

COoOQC OO0 O

CO—~O0OO0O0OC O

O OO0 OO

— OO OO O OO

Inputs

Truth Table of a 3-to-8-Line Decoder

TABLE 5-2

SO = O O —

S - OO = —

Do O D v e e




Encoders

An encoder is a digital circuit that performs the inverse operation of a decoder. An
encoder has 2" (or fewer) input lines and # output lines. The output lines generate the
binary code corresponding to the input value. An example of an encoder is the octal-
to-binary encoder whose truth table is given in Table 5-3. It has eight inputs, one for
each of the octal digits, and three outputs that generate the corresponding binary num-
ber. It is assumed that only one input has a value of 1 at any given time; otherwise the
circuit has no meaning.

The encoder can be implemented with OR gates whose inputs are determined di-
rectly from the truth table. Output z is equal to 1 when the input octal digit is 1 or 3 or
5 or 7. Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or
7. These conditions can be expressed by the following output Boolean functions:

Z:D|+D3+D5+D7
y2D2+D3+D6+D7
X=D4+D5+D@+D7



Outputs

Ot O et O vt O v

00110011

0O OO e =

Dq. Ds D6 D?

Inputs
Dy

Truth Table of Octal-to-Binary Encoder

TABLE 5-3

COOOOS OO ™
COOOO0OO0OO—~Q
COOCOO—~COD
COOOO—0OOC O
COO OO0 C
00100_000

OC— OO QD00 O

— O OO0 OO




FIGURE 5-13
Octal-to-binary encoder



MULTIPLEXERS

Multiplexing means transmitting a large number of information units over a smaller
number of channels or lines. A digital multiplexer is a combinational circuit that selects
binary information from one of many input lines and directs it to a single output line.
The selection of a particular input line is controlled by a set of selection lines. Nor-
mally, there are 2" input lines and n selection lines whose bit combinations determine
which input is selected.

A 4-to-1-line multiplexer is shown in Fig. 5-16. Each of the four input lines, I, to I,
1s applied to one input of an AND gate. Selection lines s, and s, are decoded to select a
particular AND gate. The function table, Fig. 5-16(b), lists the input-to-output path for
each possible bit combination of the selection lines. When this MSI function is used in
the design of a digital system, it is represented in block diagram form, as shown in Fig.
5-16(c). To demonstrate the circuit operation, consider the case when s,50 = 10. The
AND gate associated with input I; has two of its inputs equal to 1 and the third input
connected to I;. The other three AND gates have at least one input equal to 0, which

makes their outputs equal to 0. The OR gate output is now equal.to the 1»'r::llue of I, thus
providing a path from the selected input to the output. A multlpl_exer is also ca_lled a
data selector, since it selects one of many inputs and steers the binary information to

the output line.



o

AlA

(a) Logic diagram
FIGURE 5-16
A 4-to-1-line multiplexer

51 Sy Y
0 0 Iy
0o 1 I
1 0 I
T T

ib) Function table

_'..0
—] 1
4 x 1
lnpt;ts+2 MUX Y = Output
—]3 51 Y
Selevt

(¢c) Block diagram



