

Operational Amplifier

UNIT-III

Introduction

- •Operational amplifier (op-amp)
 - Very high gain differential amplifier
 - High input impedance
 - Low output impedance
- Applications
 - Oscillators
 - Filters
 - Instrumentation Amplifier
 - A to D Converters
 - Zero Crossing Detectors
 - Precision Rectifiers

Fig.1: Single- Ended Operation

Single Ended Input

•Single-ended input operation results when the input signal is connected to one input with the other input connected to ground.

Fig.2: Single- Ended Operation

Double-Ended (Differential) Input

- •In addition to using only one input, it is possible to apply signals at each input.
- •Resulting configuration is called double-ended operation.

Fig.3: Double- Ended Operation

Op-Amp Basics

- •An operational amplifier having
 - Very high gain
 - Very high input impedance (typically a few megohms)
 - Low output impedance (less than 100)
 - High CMRR (Common mode rejection ratio)
- Fig. 4 shows a basic op-amp unit.
- •Input terminals:
 - Inverting Input (marked with "-")
 - Non-Inverting Input (marked with "+")

A : open loop gain of op-amp

Fig.4: Basic op- amp

Fig.5: AC equivalent of op- amp circuit

Op-Amp Characteristics

Fig.6: Ideal vs. practical characteristics of Op-amp

Parameter	Ideal	General Purpose 741 Op-Amp
Voltage Gain, G	00	1 x 10 ⁵
Output Impedance, Ro	0	75 Ω
Input Resistance, Rin	8	2 ΜΩ
Offset Current, Iio	0	20 nA
Offset Voltage, Vio	0	2 mV
Bandwidth, BW	00	1 MHz
Slew Rate, SR	00	.7 V/uS

Working Principle

OPEN LOOP OPERATION

- The ideal op-amp amplifies the difference between the two applied input (i.e. at inverting and non inverting) signals.
- This difference between the two input signal is called the differential input voltage.
- The output voltage of open loop op-amp is given as

$$V_{out} = A_{OL}(V^+ - V^-)$$

Where, A_{OL} is open loop of op-amp

•In open loop, op-amp works as comparator

Fig.7: Open-loop operation

CLOSED LOOP OPERATION

- Feedback is introduced in the closed-loop configuration.
- This feedback path feeds the output signal back to input side.
- The output voltage of closed loop op-amp is given as

$$\mathbf{V}_{\mathrm{out}} = \mathbf{A}_{\mathrm{CL}}(\mathbf{V}^{+} - \mathbf{V}^{-})$$

Where, A_{CL} is the closed-loop gain

- Feedback circuit connected to op-amp determines A_{CL}
- Types of feedback
 - Positive (used in Oscillators)
 - Negative (used in Amplifiers)

Fig.8: Closed-loop operation

Concept of Virtual Short

- •Basically the "short" between two points that are imaginary.
- •In context to op-amp, virtual short means, the voltage at inverting terminal tracks the voltage at non-inverting terminal under negative feedback($V_+ = V_-$)
- •As we know that, $Gain = \frac{v_{out}}{v_{in}}$
- •As ideal gain is infinite, hence Vin = 0

$$Vin = V_{+} - V_{-}$$

$$\mathbf{V}_{+} = \mathbf{V}_{-}$$

Fig.9: Virtual Ground in negative feedback

Electrical Parameters of Op-amp

Input bias current: Average current flows in inverting & no-inverting terminal.

Input & output impedance: Resistance offered by input and output terminals to varying voltages.

Open loop gain: Overall voltage gain of amplifier.

Input offset voltage: It is the voltage that must be applied between the two terminals of op-amp to make then output zero.

Input offset current: The algebraic difference between the current in to the inverting and non-inverting terminal.

Op-Amp IC

- The most commonly used op-amp is IC741.
- •It is a 8-pin dual-in-line package with a pinout shown above.
 - Pin 1: Offset null
 - Pin 2: Inverting input terminal
 - Pin 3: Non-inverting input terminal
 - Pin 4: –VCC (negative voltage supply)
 - Pin 5: Offset null
 - Pin 6: Output voltage
 - Pin 7: +VCC (positive voltage supply)
 - Pin 8: No Connection

Fig.10: Pin Diagram of LM741

Applications

- •Operational amplifiers are popular building block, finds application in most of the consumer and industrial electronic system.
- •They can be configured as
 - Inverting Amplifier
 - Non-Inverting Amplifier
 - Buffer (Voltage follower)
 - Summing Amplifier
 - Difference Amplifier
 - Differentiator
 - Integrator
 - Filters
 - Comparator etc.

Inverting Amplifier

$$V_o = -\frac{R_f}{R_1} V_1$$

Fig.11: Inverting Amplifier

Non Inverting Amplifier

$$\frac{V_o}{V_1} = \frac{R_1 + R_f}{R_1} = 1 + \frac{R_f}{R_1}$$

Fig.12: Non-Inverting Amplifier

Unity Follower

It provides a gain of unity (1) with no polarity or phase reversal.

$$V_o = V_1$$

Fig.13: Unity Follower

Summing Amplifier

$$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

Fig.14: Summing Amplifier

Difference Amplifier

If
$$R_1 = R_2$$
 and $R_f = R_g$:
$$V_{\rm out} = \frac{R_{\rm f}}{R_1} (V_2 - V_1)$$

Fig.15: Difference Amplifier

Integrator

$$v_o(t) = -\frac{1}{RC} \int v_1(t) \, dt$$

Fig.16: Integrator

Differentiator

$$v_o(t) = -RC \frac{dv_1(t)}{dt}$$

Fig.17: Differentiator